Ôn tập: Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bình Yên

Cho a, b, c, d > 0. CMR:

Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

Áp dụng, chứng minh BĐT sau:

a) \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

b) \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

c) \(2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)

Phạm Nguyễn Tất Đạt
27 tháng 3 2018 lúc 20:37

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

TM Vô Danh
27 tháng 3 2018 lúc 20:53

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

TM Vô Danh
27 tháng 3 2018 lúc 21:00

b)

\(\dfrac{a}{a+b+c+d}+\dfrac{b}{b+c+d+a}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a+d}{a+b+c+d}+\dfrac{a+b}{a+b+c+d}+\dfrac{b +c}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}\)

\(\Leftrightarrow\dfrac{a+b+c+d}{a+b+c+d}< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{2\left(a+b+c+d\right)}{a+b+c+d}\)\(\Leftrightarrow1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

TM Vô Danh
27 tháng 3 2018 lúc 21:12

\(\dfrac{a +b}{a+b+c+d}+\dfrac{b+c}{a+b+c+d}+\dfrac{c+d}{a+b+c+d}+\dfrac{a+d}{a+b+c+d}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< \dfrac{a+b+d}{a+b+c+d}+\dfrac{b+c+a}{a+b+c+d}+\dfrac{c+d+b}{a+b+c+d}+\dfrac{d+a+b}{a+b+c+d}\)\(\Leftrightarrow\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}< \dfrac{a+b}{a+c+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< \dfrac{3\left(a+b+c+d\right)}{a+b+c+d}\)\(\Leftrightarrow2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)


Các câu hỏi tương tự
Phan Cả Phát
Xem chi tiết
Duyên Trần
Xem chi tiết
Trần Thiên Kim
Xem chi tiết
Thiên Diệp
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Phượng Hoàng
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết