Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Anh

Cho a + b + c + d = 0. Chứng minh rằng: \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 3 2020 lúc 16:12

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đinh Thị Minh Ánh
Xem chi tiết
Kamato Heiji
Xem chi tiết
ĐoànThùyDuyên
Xem chi tiết
Suzanna Dezaki
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Thục Trinh
Xem chi tiết