Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Thị Minh Ánh

Cho a+b+c+d=0

Chứng minh rằng \(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab+cd\right)\)

Trần Quốc Khanh
31 tháng 3 2020 lúc 14:54

Theo đề, a+b+c+d=0

\(\Rightarrow a+b=-\left(c+d\right)\)

Ta có: \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(c+d\right)\left(c^2-cd+d^2\right)\)

\(\Leftrightarrow VT=\left(c+d)\left(c^2-cd+d^2-a^2+ab-b^2\right)\right)\)

Để có ĐPCM ta xét hiệu: \(c^2-cd+d^2-a^2+ab-b^2-3\left(ab+cd\right)=c^2-4cd+d^2-a^2-2ab-b^2=c^2-4cd+d^2-\left(a+b\right)^2=c^2-4cd+d^2-\left(c+d\right)^2=-6cd\)

S nó ko = 0 ta:::xem lại đề..Hay mk lm sai j đó

Khách vãng lai đã xóa

Các câu hỏi tương tự
ĐoànThùyDuyên
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Kamato Heiji
Xem chi tiết
Edogawa Conan
Xem chi tiết
Khanh Hoa
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Khanh Hoa
Xem chi tiết