Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Cho a,b,c>0. Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)\(\ge\frac{9}{4a+4b+4c}\)
Cho a, b, c > 0. CMR :
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\)
Cho số thực dương a,b,c thỏa mãn a+b+c=2016.
Tìm min biểu thức P = \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
1.Cho a,b,c >0. Chứng minh rằng:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.
Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z
Cho a+b+c=0.Chứng minh
\(\frac{b-c}{a\left(a-b\right)}\)+\(\frac{c-a}{b\left(a-b\right)}\)=\(\frac{2c}{ab}\)
Cho a, b, c là các số thực dương. CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}< \frac{a+b+c}{6}\)