Áp dụng bất đẳng thức Cô-si :
\(a+\frac{1}{a}=\frac{1}{4}a+\frac{1}{a}+\frac{3}{4}a\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3}{4}\cdot2=\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\)
Áp dụng bất đẳng thức Cô-si :
\(a+\frac{1}{a}=\frac{1}{4}a+\frac{1}{a}+\frac{3}{4}a\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3}{4}\cdot2=\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\)
Cho a+4b=1. CMR \(a^2+4b^2\ge\frac{1}{5}\)
Bài 1: Với a,b,c khác 0. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c^{ }}\)
Bài 2: CMR: Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b +c = abc thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) với điều kiện a,b,c khác 0 và a+b+c khác 0.
cho a,b,c là các số lớn hơn 1 :
CMR: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\) ≥ 12
Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR:
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Cho a≥1 b≥1 thỏa mãn: a≥1 b≥1:
CMR:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
Cho a, b, c > 0. CMR :
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Cho a,b,c >0 cmr: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\ge\frac{3}{2}\)