Giải:
Vì:
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}_{\left(2\right)}.\)
\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}.\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{abc}{bcd}=\dfrac{a}{d}.\)
\(\Rightarrowđpcm.\)