Theo tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
=> k = 3
sửa: \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
giải:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}\\ =\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\\ =\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3=k\)
vậy k=3
Giải :
Cộng thêm 1 vào mỗi tỉ số đã cho ta được:
\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{d+a+b}{c}+1\)\(=\dfrac{a+b+a}{d}+1=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}\)\(=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Vì a+b+c+d \(\ne\)0 nên a=b=c=d
=>k=\(\dfrac{3a}{a}=3\)