Bài 8: Tính chất của dãy tỉ số bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Măm Măm

Cho 4 số a, b, c, d khác 0 và thỏa mãn các hệ thức :

\(b^2=a.c\) ; \(c^2=b.d\)\(b^3+c^3+d^3\) khác 0. Chứng minh : \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) \(=\dfrac{a}{d}\)

Hải Đăng
14 tháng 10 2017 lúc 13:32

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=\dfrac{b}{c}=\dfrac{c}{d}\)

Do đó: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Do đó: \(\dfrac{a^3.b^3.c^3}{b^3.c^3.d^3}=\dfrac{a}{d}\left(đpcm\right)\)

Vậy ...............

Chúc bạn học tốt!

thám tử
14 tháng 10 2017 lúc 19:47

\(\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) (1)

Từ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)


Các câu hỏi tương tự
Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Ruby Châu
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Ngô Ngọc Khánh
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
England
Xem chi tiết
You Are Mine
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết