- Ta có : \(\widehat{DIC}=\) ( sđ\(\stackrel\frown{BC}+\) sđ \(\stackrel\frown{AB}\) ) : 2 = 80o .
- Ta có : \(\widehat{AMB}=\) ( sđ\(\stackrel\frown{BC}-\) sđ \(\stackrel\frown{AB}\) ) : 2 = 40o .
Cô Trầm đừng cho bài làm khó tụi em nữa 😥 Gửi cô!!
- Ta có : \(\widehat{DIC}=\) ( sđ\(\stackrel\frown{BC}+\) sđ \(\stackrel\frown{AB}\) ) : 2 = 80o .
- Ta có : \(\widehat{AMB}=\) ( sđ\(\stackrel\frown{BC}-\) sđ \(\stackrel\frown{AB}\) ) : 2 = 40o .
Cô Trầm đừng cho bài làm khó tụi em nữa 😥 Gửi cô!!
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), D và E theo thứ tự là trung điểm của các cung AB, AC. Gọi giao điểm của DE với AB, DE với AC theo thứ tự là M và N
•Cho biết sđAB = 60: sđAC=100. Tính góc DCA, góc AMN?
• Gọi I là giao điểm của BE và CD, chứng minh tứ giác BDMI nội tiếp đường tròn
2.Cho hai cung AC và BD bị chắn giữa hai dây song song AB và CD trong một đường tròn. CM cung AC= cung BD
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
cho đường tròn (O) và BC là đây cung cố định nhỏ hơn đường kính .Lấy điểm A trên cung lớn BC sao cho Δ ABC nhọn và AB<AC .Gọi AD,BE,CF là các đường cao của tam giác ABC . Gọi M là giao điểm của EF và BC
a, cm : MB.MC=ME.MF
b, đường thẳng đi qua D và song song với EF , cắt AB và AC lần lượi tại P và Q .
cm : Δ DEF là tam giác cân tại D
Cho (O;R) và một điểm A nằm ngoài đường tròn sao cho OA=2R. Các tiếp tuyến AB, AC( B, C là các tiếp điểm). Gọi H là giao điểm của OA với BC, AO cắt cung nhỏ BC tại H và cung lớn BC tại N. a/ chứng minh OA vuông góc với AC và R^2=OA*HM. b/ vẽ các tiếp tuyến bất kì A, D, E. Gọi K là trung điểm của DE. Chứng minh 5 điểm A, B, O, K, C thuộc một đường tròn
Bài 3: Cho nửa đường tròn (O) đường kính AB và AC là một dây của nó. Kẻ tiếp tuyến Ax và kẻ đường phân giác của góc CAx cắt nửa đường tròn tại E và cắt BC kéo dài tại D. a/C/m: AABD cân. b/ C/m: OE // BD. c/Gọi I là giao điểm của AC và BE. C/m: DI ⊥ AB. d/Tính độ dài AE, biết AB = 2cm và BAC = 20°,
Cho đường tròn (O) đường kính BC, điểm M thuộc đường tròn (M khác C và B). Tiếp tuyến tại C của đường tròn (O) cắt tia BM tại N. Lấy A là điểm chính giữa cung nhỏ MC, tia CA cắt tia BM tại D. E là giao điểm AB và MC
a) Tính số đo của góc BMC
b) Chứng minh tứ giác ADME nội tiếp đường tròn
c) Chứng minh DM/DN=BM/BN
Trên nửa đường tròn (O;R) đường kính BC, lấy điểm A sao cho BA = R
a) C/m: △ ABC vuông và tính số đo \(\widehat{B}\), \(\widehat{C}\)
b) Qua B vẽ tiếp tuyến của (O). Gọi I là giao điểm của OD và BE. C/m: OD ⊥ BE và DI . DO = DA . DC
c) Kẻ EH ⊥ BC tại H, EH cắt CD tại G. C/m IG // BC
Cho đường tròn tâm O đường kính BC trên đoạn thẳng OB lấy điểm D ( D không trùng với O và B ) gọi I là trung điểm của đoạn thẳng BD . qua I kẻ MN của đường tròn tâm O vuông góc với BD , a) tứ giác BMDN là hình gì ? vì sao ? b) gọi K là giao điểm thứ hai của MC và đường tròn tâm (O') đường kính CD.chứng minh rằng IK là tiếp tuyến của đường tròn tâm( O')