\(P=x+\left(y^2+1\right)+\left(z^3+1+1\right)-3\ge x+2y+3z-3\)
Ta lại có: \(6=\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{\left(1+2+3\right)^2}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
\(\Rightarrow P\ge6-3=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(P=x+\left(y^2+1\right)+\left(z^3+1+1\right)-3\ge x+2y+3z-3\)
Ta lại có: \(6=\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{\left(1+2+3\right)^2}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)
\(\Rightarrow P\ge6-3=3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Cho các số thực x, y, z dương
chứng minh: \(\frac{1}{x^3y^3}+\frac{y^3}{z^3}+x^3z^3\ge\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\)
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
cho x, y, z >1 thỏa mãn \(x^2+y^2+z^2=6.\) Chứng minh \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{3\sqrt{2}}{3}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho 3 số x,y,z >0 thỏa x+y+z=6 chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge6\)
Cho x, y, z là các số thực dương thỏa mãn \(xy+yz+xz=1\) . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y,z > 0. Chứng minh \(\frac{\sqrt{x^2+2y^2}}{z}+\frac{\sqrt{y^2+2z^2}}{x}+\frac{\sqrt{z^2+2x^2}}{y}\ge\sqrt{3}\)