Vì \(0< a,b,c< 1\) nên
\(\Rightarrow\left\{{}\begin{matrix}a^2< a\\b^2< b\\c^2< c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< a+b+c=2\)
Vì \(0< a,b,c< 1\) nên
\(\Rightarrow\left\{{}\begin{matrix}a^2< a\\b^2< b\\c^2< c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< a+b+c=2\)
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
cmr:(a2/b+c)+(b2/a+c)+(c2/a+b)>a+b+c/2
cho 2 số a,b thỏa: a2-2ab+1=2(ab-b2)
tinhsP= \(\dfrac{a^5+b^5+2ab}{4a^3-2ab}\)
Cho x,y,z khác 0 và A=\(\dfrac{y}{z}\)+\(\dfrac{z}{y}\) ; B=\(\dfrac{x}{z}+\dfrac{z}{x}\); C=\(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính giá trị biểu thức : A2+B2+C2-ABC
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)
Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0
Cho a,b,c là 3 số đôi 1 khác nhau
Và \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CM \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ