\(1=\frac{1}{x}+\frac{3^2}{y}\ge\frac{\left(1+3\right)^2}{x+y}=\frac{16}{x+y}\)
\(\Rightarrow x+y\ge16\)
\(P_{min}=16\) khi \(\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)
\(1=\frac{1}{x}+\frac{3^2}{y}\ge\frac{\left(1+3\right)^2}{x+y}=\frac{16}{x+y}\)
\(\Rightarrow x+y\ge16\)
\(P_{min}=16\) khi \(\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z
Cho 2 số thực dương thỏa mãn x+y+3xy=1
Tìm GTLN của biểu thức A= \(\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{3xy}{x+y}\)
cho a,b,c là các số thực dương thỏa mãn
x2+y2+z2=2(xy+yz+zx). tìm gtnn của biểu thức P=x+y+z+\(\frac{1}{2xyz}\)
Cho x,y là 2 số thực dương thỏa mãn \(x+y=\frac{5}{4}\). Gía trị nhỏ nhất của biểu thức \(P=\frac{4}{x}+\frac{1}{4y}\)
cho 2 số dương x,y thay đổi thỏa mãn điều kiện x+y≥4. Tìm GTNN của biểu thức:
A=\(\frac{3x^2+4}{4x}+\frac{2+y^2}{y^2}\)
giả sử x,y laf2 số dương thỏa mãn \(\frac{2}{x}+\frac{3}{y}=6\)
tìm GTNN của x+y
Cho x,y là các số thực thay đổi nhưng luôn thỏa mãn \(x+2y^3+8xy\ge2\). GTNN của biểu thức \(P=8x^4+\dfrac{1}{2}y^4-2xy\)
Cho 3 số thực dương x,y,z thỏa \(x^2+y^2+z^2\le3\) Tìm GTLN của biểu thức \(H=\frac{y}{x^2+2y+3}+\frac{z}{y^2+2z+3}+\frac{x}{z^2+x+3}\)
Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)