cho \(9a^2+4b^2=9\). tìm GTNN của
A= \(\left(1+a\right)\left(1+\dfrac{3}{2b}\right)+\left(1+\dfrac{2b}{3}\right)\left(1+\dfrac{1}{a}\right)\)
cho a,b,c dương và \(a^4b^4+b^4c^4+c^4a^4=3a^4b^4c^4\).chứng minh:
\(\dfrac{1}{a^3b+2c^2+1}+\dfrac{1}{b^3c+2a^2+1}+\dfrac{1}{c^3a+2b^2+1}\le\dfrac{3}{4}\)
Cho 2 số dương a,b và a = 5 - b. Tìm giá trị nhỏ nhất của tổng \(P=\dfrac{1}{a}+\dfrac{1}{b}\)
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Cho các số thực dương a, b, c thoả mãn: \(abc=1\). Tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{1}{\sqrt{2a^3+b^3+6}}+\dfrac{1}{\sqrt{2b^3+c^3+6}}+\dfrac{1}{\sqrt{2c^3+a^3+6}}\)
câu 1: Cho a,b,c là các số không âm thỏa a+b+c=3.chứng minh
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{3}{2}\)
câu 2: cho a,b,c là 3 cạnh của 1 tam giác . chứng minh
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
câu 3:tìm tất cả nghiệm nguyên dương của phương trình
xyz+xy+yz+xz+x+y+z=2015 thỏa \(x\ge y\ge z\ge8\)
Cho a, b, c là các số thực dương thỏa mãn a + b = ab. Tìm GTNN của biểu thức :
\(P=\dfrac{1}{a^2+2a}+\dfrac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)