Đề đúng : Tìm hai số nguyên a,b thỏa mãn : \(a^2+b^2+1=ab+a+b\)
Giải : \(a^2+b^2+1=ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+ab\right)=2\left(ab+a+b\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=1\)
Vậy (a;b) = (1;1)