\(\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\sqrt{\left(x+y\right)\left(2x+y+2y+x\right)}=\sqrt{3}\left(x+y\right)\)
\(\Rightarrow S\ge\frac{x+y}{\sqrt{3}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow S_{min}=\frac{1}{\sqrt{3}}\) khi \(x=y\)