\(\Delta'=m^2-1>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(A=x_1^4+x_2^4-2012\left(x_1^2+x_2^2\right)\)
\(A=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2-2012\left(x_1^2+x_2^2\right)\)
\(A=\left(x_1^2+x_2^2\right)^2-2012\left(x_1^2+x_2^2\right)+1006^2-1006^2-2\)
\(A=\left(x_1^2+x_2^2-1006\right)^2-1006^2-2\ge-1006^2-2\)
\(\Rightarrow A_{min}=-1006^2-2\) khi \(x_1^2+x_2^2-1006=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-1006=0\)
\(\Leftrightarrow4m^2-1008=0\)
\(\Leftrightarrow m^2=252\Rightarrow m=\pm6\sqrt{7}\)