Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a;b\) ( điều này luôn đúng )
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}.\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
Theo GT , \(ab=8\)
\(\Rightarrow a+b\ge2\sqrt{8}=4\sqrt{2}\)
Dấu " = " xảy ra
\(\Leftrightarrow a=b=\sqrt{8}\)
Vậy \(S_{min}=a+b=4\sqrt{2}\Leftrightarrow a=b=\sqrt{8}\)