cho nửa đường tròn (O) đường kính AB . Vẽ bán kính \(OC\perp AB\) . Trên các cung CA và CB lần lượt lấy các điểm M và N sao cho sđ\(\stackrel\frown{CM}=sđ\stackrel\frown{BN}\) . cmr :
a)cung AM = cung CN và AN=CN
b)MN=CA=CB
LÀM GIÚP MÌNH CÂU B) Ạ
Cho hai đường tròn cùng tâm O với bán kính khác nhau. Hai đường thẳng đi qua O cắt hai đường tròn đó tại các điểm A, B, C, D, M, N, P, Q.
a) Em có nhận xét gì về số đo của các cung nhỏ AM, CP, BN, DQ?
b) Hãy nêu tên các cung nhỏ bằng nhau.
c) Hãy nếu tên hai cung lớn bằng nhau.
cho nửa đường tròn (O) đường kính AB . Vẽ bán kính \(OC\perp AB\) . Trên các cung CA và CB lần lượt lấy các điểm M và N sao cho \(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BN}\) . CMR
a) \(\stackrel\frown{AM}=\stackrel\frown{CN}\) và AM=CN
b) MN=CA=CB
GIẢI HỘ MK CÂU B) NHA
Cho hai đường tròn (O; R) và (O': R) cắt nhau tại A, B. Hãy so sánh R và R' trong các trường hợp sau :
a) Số đo cung nhỏ AB của (O;R) lớn hơn số đo cung nhỏ AB của (O'; R')
b) Số đo cung lớn AB của (O;R) nhỏ hơn số đo cung lớn AB của (O'; R')
c) Số đo hai cung nhỏ bằng nhau.
Cho đường tròn ( O;R), dây AB R√2. Các tiếp tuyến A và B cắt nhau tại M, tia đối của tia OM cắt đường tròn (O;R) tại N
a, Tính số đo góc ở tâm AOB
b, Tính số cung AN. So sánh cung AN và cung BN
Cho đường tròn (O:R) và một điểm M nằm ngoài đường tròn sao cho MO=2R. Từ M vẽ tiếp tuyến MA với (O); tia OM cắt đường tròn tại B
a) Tính số đo cung AB
b) Kẻ tiếp tuyến MC với (O). Chứng minh OM vuông góc với AC
c) Gọi H là giao điểm của AC và OB. Chứng minh HA.HC=HB.HM
d) Chứng minh OABC là hình thoi
Cho đường tròn tâm O bán kính bằng 3 cm và điểm A Trên đường tròn trên tiếp tuyến tại A với đường tròn qua điểm B sao cho OB = 6 cm tia AB cắt đường tròn tâm O tại C Tính số đo các cung AC
Hai tiếp tuyến tại B và C của nửa đường tròn (O;R) cắt nhau tại A. Biết OA = R√2. Tính số đo của cung BC.
Hai tiếp tuyến tại B và C của nửa đường tròn (O;R) cắt nhau tại A. Biết OA = R. Tính số đo của cung BC.