Ta có: \(P=\dfrac{1}{x^3}-\dfrac{1}{y^3}\)
\(=\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^3-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}-\dfrac{1}{y}\right)\)
\(=2^3-3\cdot3\cdot2\)
\(=-10\)
Ta có:\(P=\dfrac{1}{x^3}-\dfrac{1}{y^3}=\left(\dfrac{1}{x}-\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{1}{y^2}\right)\)
\(=\left(\dfrac{1}{x}-\dfrac{1}{y}\right)\left[\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2+3.\dfrac{1}{xy}\right]=2.\left(2^2+3.3\right)=2.13=26\)
Thử thay x=1/3;y=1 vào là thấy đúng,các cặp nghiệm khác cũng tm