cho a,b,c,d là các số dương. cmr
a, \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}\frac{d}{d+a+b}< 2\)
b, \(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
cho a,b,c>0 CM: \(\frac{a}{\sqrt{ab+b^2}}\)+\(\frac{b}{\sqrt{bc+c^2}}\)+\(\frac{c}{\sqrt{ca+a^2}}\)≥3.\(\frac{\sqrt{2}}{2}\)
Cho \(\frac{a}{-4}=\frac{b}{5}\) và a2 + 2b2 = 16,5
Tính GTLN của a + b
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".
Cho 0<a,b,c<1.CMR: có ít nhất 1 trong các bdt sau là đúng:
\(a\left(1-b\right)\le\frac{1}{4};b\left(1-c\right)\le\frac{1}{4};c\left(1-a\right)\le\frac{1}{4}\)
cho a,b,c >0
đặt H=\(\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
cmr: số lớn nhất trong 3 số a,b,c luôn lớn hơn hoặc bằng H
cho tập A = \(\left\{\frac{1}{6};\frac{1}{12};\frac{1}{30};...;\frac{1}{420}\right\}\) ta có thể viết lại tập A là?
A. A=\(\left\{\frac{1}{x\left(x-2\right)}|x\in Z;1\le x\le19\right\}\)
B. A= \(\left\{\frac{1}{x\left(x+1\right)}|x\in N;2\le x\le22\right\}\)
C. A=\(\left\{\frac{1}{x\left(x+2\right)}|x\in Z;1\le x\le20\right\}\)
D. A=\(\left\{\frac{1}{x\left(x+1\right)}|x\in N;2\le x\le20\right\}\)
bạn nào giúp mình chọn đáp án đúng và giải thích làm như nào hộ mk vs ạ. mình cảm ơn
P(m) y= -x2 + (m +1)x +2 - 2m
d: y= x -m
tìm m để P và d cắt nhau tại 2 điểm pb A , B thỏa mãn
\(\frac{1}{OA}+\frac{1}{OB}=\frac{1}{\sqrt{3}}\)
HELP ME
#mã mã#