cho a>0, b>0 .Cm
\(2\sqrt{a}+3\sqrt[3]{b}\ge5\sqrt[5]{ab}\)
1/ cho 2 hs y = x-1 và y = -2x +5
a/ Vẽ đồ thị hai hàm số đã cho trên cùng một mặt phảng tọa độ
b/ bằng phép tính tìm tọa độ giao điểm của 2 hs trên
2/ giải pt và hpt
a/ x\(^2\) -3x -2 =0 b/ x\(^4\) -x\(^2\) -12 c/ \(\left\{{}\begin{matrix}2x-3y=6\\5x+3y=-8\end{matrix}\right.\)
3/ rút gọn
A=\(\dfrac{4+\sqrt{15}}{4-\sqrt{15}}\) - \(\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\) B= 3 + \(\left(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\) . 3+\(\dfrac{a+5\sqrt{a}}{5-\sqrt{a}}\)\(\)
4/ cho tam giác ABC vuông tại A , AB=4.5 cm , AC=6 cm .
1) tính đcao AI và Diện tích hình tròn ngoại tiếp tam giác ABC
2) trên cạnh AC lấy H.đường tròn đường kính HC , BH cắt (o) tại D, OA cắt (O) tại K , đường tròn (O) cắt BC tại E . Chứng minh
a) tứ giác ABCD ; ABHE nội tiếp
b) CA là phân giác góc KCB
GIẢI PHƯƠNG TRÌNH BẰNG CÁCH ĐẶT ẨN PHỤ \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
1,CM bằng phản chứng:" Nếu pt bậc 2 ax2 + bx + c = 0 thì a và c cùng dấu
2,CM bằng phản chứng: Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác
3, Cho a, b, c dương < 1. CMR ít nhất 1 trong 3 BĐT sau sai: \(a\left(1-b\right)>\frac{1}{4},b\left(1-c\right)>\frac{1}{4},c\left(1-a\right)>\frac{1}{4}\)
4, Nếu a1a2 \(\ge\) 2(b1 + b2) thì ít nhất 1 trong 2 pt x2 + a1x + b1 = 0, x2 +a2x + b2 = 0 có nghiệm
5, Cho các số a, b, c thỏa mãn: a + b + c = 0(1), ab + bc + ca > 0(2), abc > 0(3)
CMR cả 3 số đều dương
6, CM bằng phản chứng:"Nếu tam giác ABC có các đường phân giác trong BE = CF thì tam giác ABC cân".
chứng minh bằng pp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
cho a,b,c,d là các số dương. cmr
a, \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}\frac{d}{d+a+b}< 2\)
b, \(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
chứng minh bằng hương pháp phản chứng các mệnh đề sau đây
a. nếu \(a\ne b\ne c\) thì a2 + b2 + c2 > ab + bc + ca
b. nếu a.b chia hết cho 7 thì a hoặc b chia hết cho 7
c. nếu a và b \(\ge0\) thì \(a+b\ge2\sqrt{ab}\)
d. nếu x2 + y2 = 0 thì x=0 và y=0
e. nếu a + b > 0 thì a>0 hoặc b>0
P(m) y= -x2 + (m +1)x +2 - 2m
d: y= x -m
tìm m để P và d cắt nhau tại 2 điểm pb A , B thỏa mãn
\(\frac{1}{OA}+\frac{1}{OB}=\frac{1}{\sqrt{3}}\)
HELP ME
#mã mã#