vt lại đuề boài đi cậu, ko hịu nà :)
vt lại đuề boài đi cậu, ko hịu nà :)
Cho \(\alpha-\beta=\frac{\pi}{3}\). Tính giá trị bthuc
a) \(A=\left(cos\alpha+cos\beta\right)^2+\left(sin\alpha+sin\beta\right)^2\)
b) \(B=\left(cos\alpha+sin\beta\right)^2+\left(cos\beta-sin\alpha\right)^2\)
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
1, Nếu \(5\sin\alpha=3\sin\left(\alpha+2\beta\right)\) thì \(\tan\left(\alpha+\beta\right)=?\)
2, Nếu tam giác ABC thỏa mãn \(\sin A=\frac{\sin B+\sin C}{\cos B+\cos C}\) thì tam giác này vuông tại đâu?
Mng giúp mình với ạ!!! Mình cảm ơn nhiều!!!
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
Câu 1 : Chọn đẳng thức đúng và chứng minh :
\(A.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1-sin\alpha}{2}\) \(B.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1+sin\alpha}{2}\)
\(C.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1-cos\alpha}{2}\) \(D.cos^2\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\frac{1+cos\alpha}{2}\)
Cho 2 góc nhọn α, β có \(\tan\alpha=\frac{1}{2}\), \(tan\beta=\frac{1}{3}\)
a) Tính \(\tan\left(\alpha+\beta\right)\)
b) Tính α + β
\(F=\dfrac{\sin\alpha-2\sin\left(2\alpha\right)+\sin\left(3\alpha\right)}{\cos\alpha-3\cos\left(2\alpha\right)+\cos\left(3\alpha\right)}\)
Mn rút gọn giùm mình biểu thức này với. Mình cảm ơn ạ :<
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)