Chọn ý SAI trong các ý sau: a. Sin 20 < sin 50 b. Tan 70 = cot 20 c. Cos 20 < cos 50 d. Sin 30 = cos 60
Tính cos²25° - cos²12° - cos²78° + sin30° + cos²65° + 7cot45° Cho tana = 3. Tính sin, cos, tan
Cho 0o < x < 90o, CM các biểu thức sau không phụ thuộc vào biến:
\(1.A=2\left(\sin^4x+\cos^4x+\sin^2x\cos^2x\right)^2-\left(\sin^8x+\cos^8x\right)\)
\(2.B=\left(\dfrac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
\(3.C=\left(\sin^4x+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
\(4.D=\dfrac{\tan^2x-\cos^2x}{\sin^2x}+\dfrac{\cot^2x-\sin^2x}{\cos^2x}\)
\(5.E=\dfrac{\cot^2x-\cos^2x}{\cot^2x}+\dfrac{\sin x\cdot\cos x}{\cot x}\)
Chứng minh các đẳng thức sau:
a) \(\dfrac{1}{1+\tan\alpha}+\dfrac{1}{1+\cot\alpha}=1\) b) \(\sin^4x-\cos^4x=2\sin^2x-1\)
c) \(\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}=\tan^2x+\cot^2x+2\)
d) \(\sin x.\cos x.\left(1+\tan x\right)\left(1+\cot x\right)=1+2\sin x\)
Cho tan giác đều cạnh a, kẻ AH vuông góc với BC. Tính tỉ số lượng giác của góc HAC, góc C. Suy ra Sin30°, Cos30°, Tan30°, Cot30°
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
Không dùng máy tính hãy tính giá trị a) A = (sin 30° -cos 60° ) + ( tan 40° . tan 50°) b) B = ( cos² 20° +cos² 70° ) - (cot 42° . cot 48°) Tôi cần gấp nên mọi người giúp ạ
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)