Xét ΔABC vuông tại A ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{AB^2+\left(2AB\right)^2}=AB\sqrt{5}\)
Mà:
\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{AB}{AB\sqrt{5}}=\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\\cosC=\dfrac{AC}{BC}=\dfrac{2AB}{AB\sqrt{5}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\\tanC=\dfrac{AB}{AC}=\dfrac{AB}{2AB}=\dfrac{1}{2}\\cotC=\dfrac{AC}{AB}=\dfrac{2AB}{AB}=2\end{matrix}\right.\)