Gọi: \(O=AC\cap BD\)
Từ A, kẻ AK ⊥ BD.
Nối KS, từ A kẻ AH ⊥ KS.
Ta có: \(\left\{{}\begin{matrix}AK\perp BD\left(cachdưng\right)\\SA\perp BD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow BD\perp\left(ASK\right)\Rightarrow BD\perp AH\)
Mà: AH ⊥ KS (cách dựng)
\(\Rightarrow AH\perp\left(SBD\right)\)
⇒ d(A, (SBD)) = AH
Ta có: \(OA=OB=\dfrac{1}{2}BD=\dfrac{1}{2}\sqrt{BC^2+DC^2}=a\)
⇒ Δ ABO đều \(\Rightarrow AK=\dfrac{a\sqrt{3}}{2}\)
Xét Δ SAK vuông tại A, có: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}=\dfrac{19}{12a^2}\)
\(\Rightarrow AH^2=\dfrac{12a^2}{19}\Rightarrow AH=\dfrac{2a\sqrt{57}}{19}\)