1. Mệnh đề nào đúng , giải thích ?
a ) P: ∃ xϵ R, 5x _ 3x 2 ≤ 1
2. Xem mđ đó đúng hay sai
a) P= ∃ x ϵ R: x 2 ≤ 0
b) P = ∀ x ϵ R : x ≤ x 2
c) P = ∀ x ϵ Q : 4x2 - 1 ≠ 0
d) P = ∃ x ϵ R : x2 - x + 7 nhỏ hơn 0
bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:
a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0
b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)
bài 2: xác định tính đúng-sai của các mệnh đề sau :
a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4
bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.
Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.
b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương
Bài 4: Xét tính đúng sai của các mệnh đề sau:
a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''
Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.
Xét tính đúng sai của mỗi mệnh đề sau:
∀x,y∈R,x^2+xy+y^2≥0
∃x,y∈R,x^2+y^2+xy<0
y=-x-6x có GTLN bằng 9
∀n∈N,(n^2+7n+12)⋮2
xác định tính đúng sai của các mệnh đề sau :
a,∀x∈R, x>-2 ⇒ x2 >4
b, ∀x∈R, x>2 ⇒ x2 >4
c, ∀m,n ∈ N, m và n là các số lẻ ⇔ m2 -n2 là số chẵn
d, ∀x∈R, x2 >4 ⇒ x>2
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
Tìm tất cả các cặp số (x,y) sao cho cả 3 mệnh đề P, Q, R sau đây đều đúng
P(x,y): "2x2 - xy + 9= 0
Q(x,y):" 2x2 + y2 ≤ 81"
R(x): "x ∈ \(Z\)"
GIÚP MÌNH VỚIIIIII
Phát biểu, xét tính đúng sai, lập mệnh đề phủ định
∃ x ∈ R, ∃ y ∈ R, x2 + y2 - 2x - 6y = 6
Phát biểu thành lời, xét tính đúng sai và lập mệnh đề phủ định của các mệnh đề sau:
a/ ∃ x ∈ R : x2 = -1
b/∀ x ∈ R : x2 +x +2 ≠0
giup mình voi . Mình cần gấp
1. Mệnh đề nào sau đây là mệnh đề đúng? Giải thích:
a) 5 > 3 hay 5 < 3
b) \(\forall x\in R,x^2-x=1>0\)
c) \(\forall x\in R,x>3\Rightarrow x^2>9\)
2. Điền từ vào chỗ trống " và " hay " hoặc " để được mệnh đề đúng
\(\pi< 4\) ........... \(\pi>5\)
3. Cho mệnh đề chứa biến \(P\left(x\right)\) với \(x\in R\) . Tìm x để \(P\left(x\right)\) là mệnh đề đúng:
a) \(P\left(x\right):x^2+x+1>0\)
b) \(P\left(x\right):\sqrt{x}\ge x\)
cho mệnh đề P: " ∃x ∈ |R , x^2 +2x+3>0 " xét tính đúng sai của mệnh đề
giáo viên giải: vì x^2 +2x+3= (x+1)^2 +2 ≥ 2 >0 => ∀x ∈ |R , x^2 +2x+3>0 => mệnh đề P saicho mình hỏi làm vậy có đúng không? :(
nếu viết ra ta được mệnh đề phủ định của P là :'' ∀x ∈ |R , x^2 +2x+3 ≤0 '' => SAInhưng theo lý thuyết thì 1 trong 2 (mệnh đề P và mệnh đề phủ định của nó) phải có 1 đúng 1 sai chứ??