Câu 1 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2\)trên đoạn \(\left[-1;3\right]\)
Câu 2 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=x^2-2x+4\sqrt{2x-x^2}+3\)
Câu 3 . Tìm giá trị nhỏ nhất của biểu thức \(M=x^2-4x+6\left|x-2\right|-2\) Câu 4 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\sqrt{x+6}+\sqrt{10-x}+4\sqrt{x+6}+\sqrt{10-x}-2\) Câu 5 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\sqrt{x-5}+\sqrt{7-x}\) Giúp tớ nhacâu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự