\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(\Rightarrow A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{1}{x+1}+\frac{x+1}{4}\geq 1; \frac{1}{y+1}+\frac{y+1}{4}\geq 1; \frac{1}{z+1}+\frac{z+1}{4}\geq 1\)
Cộng theo vế:
\(\Rightarrow A+\frac{x+y+z+3}{4}\geq 3\)
\(\Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\)
Mà \(x+y+z\leq 3\Rightarrow \Leftrightarrow A\geq \frac{9}{4}-\frac{x+y+z}{4}\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)
Vậy \(A_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
-------------
Hoặc bạn có thể áp dụng luôn BĐT Cauchy-Schwarz:
\(A\geq \frac{(1+1+1)^2}{1+x+1+y+1+z}=\frac{9}{x+y+z+3}\geq \frac{9}{3+3}=\frac{3}{2}\)