Câu 1: Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O, gọi AD là đường kính của đường tròn (O). Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E và F. 1) Chứng minh: MD^2 = MC.MB
2) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO, đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P. 3) Chứng minh O là trung điểm của EF