Câu 1:
Cho (P): \(y=x^2\); (d): \(y=\left(2a+1\right)x-a^2\)
Tìm a để đường thẳng (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn:
\(x_1-4x_2=0\)
Câu 2:
Cho (P): \(y=x^2\) và (d): \(y=\left(a-1\right)x+1\)
Tìm a để đường thẳng (d) cắt (P) tại 2 điểm phân biệt \(M\left(x_1;y_1\right)\) và \(N\left(x_2;y_2\right)\) thỏa mãn:
\(\left(y_1-1\right)\left(y_2-1\right)=x_1+x_2\)
Giúp mình gấp với! :(
Câu 1.
Phương trình hoành độ giao điểm:
\(\begin{align} & {{x}^{2}}=\left( 2a+1 \right)x-{{a}^{2}} \\ & \Leftrightarrow {{x}^{2}}-\left( 2a+1 \right)x+{{a}^{2}}=0 \\ & \Delta ={{\left[ -\left( 2a+1 \right) \right]}^{2}}-4.1.{{a}^{2}}=4a+1 \\ \end{align}\)
Để (d) cắt (P) tại 2 điểm phân biệt thì $\Delta >0\Rightarrow 4a+1>0\Rightarrow a>-\dfrac{1}{4}$
Theo hệ thức Vi – ét, ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=2a+1\left( 1 \right) \\ & {{x}_{1}}{{x}_{2}}={{a}^{2}}\left( 2 \right) \\ \end{align} \right.\)
Theo đề bài, ta có: ${{x}_{1}}-4{{x}_{2}}=0\left( 3 \right)$
Kết hợp (1) và (3), ta được: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2a + 1\\ {x_1} - 4{x_2} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = \dfrac{{8a + 4}}{5}\\ {x_2} = \dfrac{{2a + 1}}{5} \end{array} \right.\left( * \right)\)
Thay (*) vào (2), ta được:
\(\begin{array}{l} \left( {\dfrac{{8a + 4}}{5}} \right).\left( {\dfrac{{2a + 1}}{5}} \right) = {a^2}\\ \Leftrightarrow \dfrac{{\left( {8a + 4} \right)\left( {2a + 1} \right)}}{{25}} = {a^2}\\ \Leftrightarrow 16{a^2} + 16a + 4 = 25{a^2}\\ \Leftrightarrow 9{a^2} - 16a - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l} a = 2\left( {tm} \right)\\ a = - \dfrac{2}{9}\left( {tm} \right) \end{array} \right. \end{array}\)