Xét tứ giác AMCN có
AM//CN
AM=CN
DO đó: AMCN là hình bìnhhành
Suy ra: AC cắt MN tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,MN đồng quy
Xét tứ giác AMCN có
AM//CN
AM=CN
DO đó: AMCN là hình bìnhhành
Suy ra: AC cắt MN tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,BD,MN đồng quy
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho hình chữ nhật ABCD. Có O là giao điểm 2 đường chéo AC và BC , Gọi M là TĐ của CD.
a) C/m: AOMD là hình thang vuông.
b) Đường thẳng qua A và song song vs BD cắt đường thẳng OM tại N. C/m tứ giác ANOD là hbh.
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Gọi H là trung điểm AB, đường trung trực của AB cắt AC, BD lần lượt tại M, N.
a) CMR:\(AB^2=4.HM.HN=2.AO.AM\)
b) CMR: \(\dfrac{1}{AM^2}+\dfrac{1}{BN^2}=\dfrac{4}{AB^2}\)
c) Cho AM=10cm, BN=7,5cm.Tính diện tích hình thoi ABCD
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD (đáy nhỏ AB), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với 2 đáy cắt các cạnh AD tại M và BC tại N. Gọi S là giao điểm của AD, BC. I là trung điểm của AB. Chứng minh: Si, DN, CM đồng quy
Cho hình thang ABCD có AB = 5cm, CD = 8 cm, AB song song CD. Gọi M, N thứ tự là trung điểm của AC và BD, MN cắt AD tại E
a) Tính MN, NE
b) Gọi F là trung điểm của BC. Chứng minh 4 điểm M, N, E, F thẳng hàng
Giải gấp hộ mk với
Cho hình thang ABCD ( với AB // CD , AB < CD ) . Gọi trung điểm của đường chéo BD là M . Qua M kẻ đường thẳng // với DC cắt AC tại N . Chứng minh
a, N là trung điểm AC
b, MN = \(\frac{CD-AB}{2}\)
Cho hình thang cân ABCD(AB//CD,AB<CD). Gọi O là giao điểm của AC và BD, I là giao điểm AD và BC. Gọi M,N lần lượt là trung điểm của AB, CD
a)CM: OA=OB,OC=OD
b)CM:I,M,O,N thẳng hàng