Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
1)Cho hình thang ABCD (AB là đáy bé).Một đường thẳng song song với AB cắt AD,BD,AC,BC lần lượt tại M,N,P,Q.
CMR: MN=PQ
2)Cho hình thang ABCD (AB//CD) . M là trung điểm của CD . MA cắt BD tại I ; MB cắt AC tại K .
CMR:IK//AB
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
\(S_{ABC}=\dfrac{AB.BC.CA}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
3) \(S_{ABC}=\dfrac{AB.BC.AC}{2AN}\)