Câu 1:
\(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx\)
\(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=2m\end{matrix}\right.\)
Để $(C_m)$ có 2 cực trị thì \(y'=0\) phải có 2 nghiệm , tức là $m\neq 0$
Khi đó: Hai cực trị của đths là: \(A(0; 2); B(2m, 2-4m^3)\)
Gọi ptđt $AB$ là $y=ax+b$
\(\Rightarrow \left\{\begin{matrix} 2=a.0+b\\ 2-4m^3=2ma+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=2\\ a=-2m^2\end{matrix}\right.\)
Vậy PTĐT $AB$ là: \(y=-2m^2x+2\)
$I(1,0)$ đi qua nên \(0=-2m^2+2\Rightarrow m=\pm 1\)
Câu 2:
Ta có:
\(y=(2x^2-1)^3(x^2-1)^2\)
\(\Rightarrow y'=3.4x(2x^2-1)^2(x^2-1)^2+2.2x(2x^2-1)^3(x^2-1)\)
\(=4x(x^2-1)(2x^2-1)^2(5x^2-4)\)
Vì $(2x^2-1)^2$ là lũy thừa số mũ chẵn nên tại \(x=\pm \sqrt{\frac{1}{2}}\) thì đths không đổi hướng biến thiên mà tiếp tục đơn điệu tăng hoặc đơn điệu giảm nên nó không phải điểm cực trị
Do đó các điểm cực trị của đths thỏa mãn: \(4x(x^2-1)(5x^2-4)=0\Leftrightarrow x=0; x=\pm 1; x=\frac{\pm 2}{\sqrt{5}}\)
Tức là có 5 cực trị