1. Cho \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1_{ }\end{matrix}\right.\). Chứng minh rằng: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
2. Cho \(\left\{{}\begin{matrix}a\ge3\\b\ge4\\c\ge2\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức P=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{2\sqrt{2}}\)
3. Cho \(x,y>0\). Tìm giá trị nhỏ nhất của biểu thức: \(f\left(x;y\right)=\dfrac{\left(x+y\right)^3}{xy^2}\)
giải hpt \(\left\{{}\begin{matrix}3x-2\left|y\right|=1\\x+3\left|y\right|=4\end{matrix}\right.\)
Tìm \(a,b,c\in Z\) thỏa mãn:
\(\left\{{}\begin{matrix}\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\left(a,b,c>0\right)}\)
\(\left\{{}\begin{matrix}\frac{1}{x-2}+\frac{1}{y-1}=2\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
Tìm giá trị của m để hệ có nghiệm x=1
Giải hệ phương trình: \(\left\{{}\begin{matrix}3x-\dfrac{2}{y+1}=-\dfrac{1}{2}\\2x+\dfrac{1}{y+1}=2\end{matrix}\right.\)
Tìm các hệ số a và b biết hệ \(\left\{{}\begin{matrix}\left(a-2\right)x+5by=25\\2ax-\left(b-2\right)y=5\end{matrix}\right.\) có nghiệm (x ; y) = (3 ; 1)
Cho a, b, c thỏa mãn \(\left\{{}\begin{matrix}a\ge3\\b\ge4\\c\ge2\end{matrix}\right.\)
Tìm Max \(y=\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}\)
xác định m để 2 đg thẳng có pt \(\left\{{}\begin{matrix}\left(d1\right)x+y=m\\\left(d2\right)mx+y=1\end{matrix}\right.\)cắt nhau tại 1 điểm trên P y=-2x2