A \(=2008+\sqrt{x^2-8x}\)
Để A có gt thì \(\sqrt{x^2-8x}\ge0\forall x\)
\(\Rightarrow x^2-8x=0\) thì A nhỏ nhất
Có: \(x^2-8x=0\Leftrightarrow x=0\)
\(\Rightarrow A_{MIN}=2008\Leftrightarrow x=0\)
B = x - \(\sqrt{x-2007}\)
Đặt \(\sqrt{x-2007}=a\ge0\)
=> x = a2 + 2007
B = a2 + 2007 - a
\(B=a^2-2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{8027}{4}=\left(a-\dfrac{1}{2}\right)^2+\dfrac{8027}{4}\ge\dfrac{8027}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x-2007}=a=\dfrac{1}{2}\)\(\Leftrightarrow x=\dfrac{8029}{4}\)