a: Vì 2-căn 3>0 nên số này có căn bậc hai số học
b: Vì 4-căn 15>0 nên số này có căn bậc hai số học
c: Vì \(2\sqrt{3}-\sqrt{6}-1>0\)
nên số này có căn bậc hái số học
d: \(3\sqrt{2}-2\sqrt{5}+1>0\)
nên số này có căn bậc hai số học
a: Vì 2-căn 3>0 nên số này có căn bậc hai số học
b: Vì 4-căn 15>0 nên số này có căn bậc hai số học
c: Vì \(2\sqrt{3}-\sqrt{6}-1>0\)
nên số này có căn bậc hái số học
d: \(3\sqrt{2}-2\sqrt{5}+1>0\)
nên số này có căn bậc hai số học
Tính DKXD của các căn bậc thức sau:
a)\(\sqrt{2x-4}\)
b)\(\sqrt{\dfrac{3}{-2x+1}}\)
c)\(\sqrt{\dfrac{-3x+5}{-4}}\)
d)\(\sqrt{-5\left(-2x+6\right)}\)
e)\(\sqrt{\left(x^2+2\right)\left(x-3\right)}\)
f)\(\sqrt{\dfrac{x^2+5}{-x+2}}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Không dùng máy tính; hãy so sánh các số thực sau:
a) \(\sqrt{17}+\sqrt{26}\) và 9 b) \(\sqrt{48}\)và 13-\(\sqrt{35}\)
c) \(\sqrt{31}-\sqrt{19}\)và 6-\(\sqrt{17}\) d) 9-\(\sqrt{58}\)và \(\sqrt{80}-\sqrt{59}\)
e) \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{12}-\sqrt{11}\) f) \(\sqrt{7-\sqrt{21+4\sqrt{5}}}\)và \(\sqrt{5}\) -1
g) \(\sqrt{5}+\sqrt{10}+1\)và \(\sqrt{35}\) h) \(\dfrac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
i) \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (100 dấu căn) và 3
Rút gọn:
A = \(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
B = \(\dfrac{3\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{6+\sqrt{11}}}+\dfrac{3\sqrt{2}-\sqrt{11}}{\sqrt{2}-\sqrt{6-\sqrt{11}}}+18\)
C = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2n+1}+\sqrt{2n+3}}\)với n thuộc N*
D = \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
E=\(\dfrac{\left(4+\sqrt{3}\right)}{\sqrt[]{1}+\sqrt{3}}+\dfrac{\left(8+\sqrt{15}\right)}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
F = \(\left(\dfrac{2a+1}{a\sqrt{a}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\) với a >= 0 và a khác 1
Tính thu gọn :
a , \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)
b , \(\sqrt{27+12\sqrt{5}}-\sqrt{27-12\sqrt{5}}\)
c , \(\sqrt{15-6\sqrt{6}}+\sqrt{15+\sqrt{6\sqrt{6}}}\)
d , \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
e , \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
f , \(\sqrt{5+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D= \(\dfrac{\left(5+4\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Bài 1: Tính
a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
Bài 2: Giải pt:
a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)
f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
Bài 3: Cho biểu thức:
P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
a) Rút gon P
b) Tìm x để P đạt GTNN, tìm GTNN đó.
c) Tìm x \(\in\) Z để P \(\in\) Z
@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.
Thu gọn B= \(21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{5}\)
Thu gọn A= \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)