a) Xét ΔABM có:
AH vừa là đường cao(gt), vừa là đường trung tuyến(vì BH=HM)
=> ΔABH cân tại A (1)
Xét ΔABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\) (định lý tông 3 góc trong 1 tam giác)
=> \(\widehat{ABC}=180-\widehat{BAC}-\widehat{ACB}=180-90-30=60\) (2)
Từ (1),(2) suy ra: ΔABD đều
Mk giải tóm tắt nha!
a, A=90; C=30 => B=60
Tg ABH=AMH (c.g.v) => AB=AM
=> tg ABM cân tại A
Mà B=60 => Tg ABM đều.
b, Tg AHM=CEM (c.h-g.n)
=> AH=CE
c, Theo câu b, Tg AHM=CEM => HM=ME
Mà ME<MC => HM<MC
(hoặc HM=1/2. BM=1/2.CM)
d, Cm M là trực tâm của Tg AKC