Cho hình vuông ABCD. Gọi M là trung điềm AB; N là trung điểm CD.
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh: \(S_{ADM}=\dfrac{1}{4}.S_{ABCD}\)
c) Gọi trung điểm BC là P, AP cắt BN lại I. Chứng minh DI=AB
c) Gọi trung điểm BC là P, AP cắt BN lại I. Chứng minh DI=AB
(các bn chỉ cần làm câu c thôi nha)
Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là trung điểm của AB và AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tại D
a) CM: Tứ giác BDNC là hình bình hành
b) Tứ giác BDNH là hình gì? Vì sao?
c) Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh: DE=2EK
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
(Các bn làm hộ mk ý c thôi nha)
Cho hình thang ABCD (AB song song với CD). Gọi AC giao với BD tại O, AD giao với BC tại I, OI cắt AB tại E, cắt CD tại F.
a) CM; \(\dfrac{OA+OB}{OC+OD}=\dfrac{IA+IB}{IC+ID}\)
b) CM; EA=EB
c) Nếu CD=3AB và \(S_{ABCD}=48cm^2\). Tính \(S_{IAOB}\)
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM