Cho đường tròn \(\left(O\right)\) Acó 2 dây cung AB và CD sao cho tia AB và tia CD cắt nhau tại điểm E ở ngoài đường tròn. Đường thẳng kẻ từ E song song với AD cắt đường thẳng CB tại F. Khi đó ta có:
A. \(\widehat{EFC}=\frac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{BD}\right)\)
B. \(\widehat{EFC}=\frac{1}{2}\left(sđ\stackrel\frown{CD}-sđ\stackrel\frown{AB}\right)\)
C. \(\widehat{EFC}=\frac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{CD}\right)\)
D. \(\widehat{EFC}=\frac{1}{2}\left(sđ\stackrel\frown{AB}-sđ\stackrel\frown{CD}\right)\)
Nếu vẽ luôn hình cho mình thì càng tốt nha !!!
Xin chân thành cảm ơn !!!
Hai dây AB và CD của đường tròn (O ) kéo dài cắt nhau tại E ngoài đường tròn . Đường thẳng kẻ từ E song song với AD cắt đường thẳng CB tại F . Từ F dựng tiếp tuyến FM với đường tròn ( M là tiếp điểm ) . Gọi I là giao điểm của AD và BC
a) Chứng minh\(\widehat{EFC}=\frac{1}{2}\)(\(\stackrel\frown{AB}+\stackrel\frown{CD}\))
b) Chứng minh FM = FE
Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc B A C ^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:
a, Tam giác BMN cân
b, F D 2 = F E . F B
Cho tam giác ABC cân taaij A , nội tiếp trong (O) . Trên cung nhỏ AC , lấy điểm D . Gọi S là giao điểm của AD vả BC , I là giao điểm của AC và BD
a) Chứng minh \(\widehat{ASC}=\widehat{DSA}\)
b) Chứng minh \(\widehat{DIC}+\widehat{ÁSB}=2.\widehat{ACB}\)
A, B, C là ba điểm thuộc đường tròn (O) sao cho tiếp tuyến tại A cắt tia BC tại D. Tia phân giác của \(\widehat{BAC}\) cắt đường tròn ở M, tia phân giác của \(\widehat{D}\) cắt AM ở I. Chứng minh \(DI\perp AM\) ?
Cho đường tròn (O) và hai day cung song song AB, CD (A và C nằm trong cùng một nửa mặt phẳng bờ BD) ; AD cắt BC tại I. Chứng minh \(\widehat{AOC}=\widehat{AIC}.\)
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau. AB, BC, CD mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB và CD cắt nhau tại I, các tiếp tuyến của đường tròn tại B, D cắt nhau tại K
a) Chứng minh \(\widehat{BIC}=\widehat{BKD}\)
b) Chứng minh BC là tia phân giác của \(\widehat{KBD}\)
cho hình vẽ, biết sđ cung BC=140 độ, góc ACD=20 độ. Tính số đo góc BAC, cung AD, góc BEC, góc BDC, góc BIC.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S a. chứng minh ES=EM b. biết góc ESM=65 độ .tính sđ cung BM c.biết sđ cung BM =40 độ . tính góc E