Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Băng Băng

BT1:Cho x,y>0. Chứng minh rằng: (3x+3y)(\(\dfrac{1}{2x+y}\)+\(\dfrac{1}{x+2y}\)) >= 4

BT2:Cho a,b,c>0. Chứng minh rằng:

a) \(\dfrac{1}{2a+b+c}\)+\(\dfrac{1}{a+2b+c}\)+\(\dfrac{1}{a+b+2c}\)=<4

b)\(\dfrac{a}{1+a^2}\)+\(\dfrac{b}{1+b^2}\)+\(\dfrac{c}{1+c^2}\)=<\(\dfrac{3}{2}\)

Neet
20 tháng 3 2017 lúc 19:27

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

Neet
20 tháng 3 2017 lúc 19:44

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1


Các câu hỏi tương tự
Lê Phương Oanh
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Trần Băng Băng
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Pé Bình
Xem chi tiết
Pé Bình
Xem chi tiết
Nguyệt Trần
Xem chi tiết
Nguyệt Trần
Xem chi tiết