\(\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{3}\right)}=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)^2-3}=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{5+4\sqrt{3}}\)
\(=\frac{\left(4\sqrt{3}-5\right)\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}{\left(4\sqrt{3}+5\right)\left(4\sqrt{3}-5\right)}=\frac{12\sqrt{2}+12+4\sqrt{6}-5\sqrt{6}-5\sqrt{3}-5\sqrt{2}}{23}\)
\(=\frac{12+7\sqrt{2}-\sqrt{6}-5\sqrt{3}}{23}\)