Ta có: \(a+b\sqrt{3}=\dfrac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow a+b\sqrt{3}=2+\sqrt{3}\)
hay a=2; b=1
Vậy: \(a^2+b^2=2^2+1^2=5\)
Ta có: \(a+b\sqrt{3}=\dfrac{1}{2-\sqrt{3}}\)
\(\Leftrightarrow a+b\sqrt{3}=2+\sqrt{3}\)
hay a=2; b=1
Vậy: \(a^2+b^2=2^2+1^2=5\)
Tính gía trị của biểu thức \(T=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Tính các giá trị của các biểu thức:
a. A= \(\dfrac{2}{\sqrt{3}+1}+\dfrac{6}{\sqrt{3}-1}+1\)
b. B= \(\dfrac{\sqrt{\dfrac{7}{2}+\sqrt{6}}.\left(\sqrt{12}-\sqrt{2}\right)}{\sqrt{20}}\)
Cho biểu thức: A=\(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x=\(3+2\sqrt{2}\)
cho biểu thức R =\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a)rút gọn biểu thức R
b)Tìm a\(\in\)z để R có giá trị nguyên
c) Chứng minh rằng R=\(\dfrac{b+81}{b-81}\)thì \(\dfrac{b}{a}\) là 1 số nguyên chia hết cho 3
b)tìm giá trị nguyên của x để A có giá trị nguyên
Bài 1: Giải pt
a) \(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\)
b) \(\sqrt{4x^2-4x+1}=2x-1\)
Bài 2: Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) So sánh giá trị của A với \(\dfrac{1}{3}\)
Bài 3: Thực hiện phép tính
a) \(\left(\sqrt{32}-2\sqrt{18}\right).\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
Bài 4: Giải pt
a) \(\sqrt{x^2-2x+1}=x+2\)
b) \(\sqrt{3x+2}=\sqrt{x+5}\)
Bài 5: Cho biểu thức
A= \(\left(\dfrac{3\sqrt{x}+x}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
a) Tìm ĐKXĐ và rút gọn A
b) Chứng minh rằng A<1
1.Cho 2 biểu thức:
A=\(\dfrac{x+3}{\sqrt{x-2}}\) và B=\(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)+ \(\dfrac{5\sqrt{x-2}}{x-4}\) với x>0, x≠4
a.Rút gọn B b.Tìm x để M=\(\dfrac{A}{B}\) đạt giá trị nhỏ nhất
2.Cho 2 biểu thức:
A=\(\dfrac{\sqrt{x+2}}{\sqrt{x+3}}\)và B=\(\dfrac{5}{x+\sqrt{x}-6}\)+\(\dfrac{1}{\sqrt{x}-2}\)
a.Rút gọn C=A-B b.Tìm x để C=\(-3\sqrt{x}\)
Rút gọn và tính giá trị các biểu thức :
a, \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\left(x>0\right)T\text{ại}:x=1\)
\(b,\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) ( a > b > 2 ) tại a = 4 ; b = 3
c, \(ab^2.\sqrt{\dfrac{4}{a^2.b^4}}+ab\left(a;b\ne0;a>0\right)\) Tại a = 1 ; b = - 2
d,\(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\left(a;b>0\right)\) Tại a = 1 ; b = 2