\(\tan\alpha=0,1512\approx\tan8^036'\\ \Rightarrow\alpha\approx8^036'\)
\(\tan\alpha=0,1512\approx\tan8^036'\\ \Rightarrow\alpha\approx8^036'\)
Bài 1:
a) Giải ΔMNP vuông tại M biết NP=4cm, góc N=35o. (Số đo góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số thập phân thứ ba).
b) Biết 0o<α<90o. Thu gọn biểu thức sau: A=\(\dfrac{2cos^2\alpha-1}{sin\alpha+cos\alpha}\)
c) Sắp xếp các tỉ số lượng giác theo giá trị tăng dần:
sin 35o; cos25o; sin60o; sin30o; cos40o
Bài 5: Cho góc nhọn α, biết sin α = 2/3. Không tính số đo góc, hãy tính cos α, tan α, cot α
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC vuông tại A biết sin C = 3/5 số đo góc C làm tròn đến độ là
Câu 5. Giải tam giác vuông ABC (Â = 1V), biết cạnh AB = 21cm, AC= 18cm. (Độ dài đoạn thẳng làm tròn đến chữ số thập phân thứ 2, số đo góc làm tròn đến độ)
cho tam giác ABC vuông tại A, B = 60° BC = 20 cm giải tam giác vuông ABC ( làm tròn đến độ đối với số đo góc làm tròn đến chữ số thập phân thứ tư đối với số đo độ dài )
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ).
Cho góc nhọn α, biết cos α = \(\dfrac{1}{5}\). Tính sin α, tan α, cot α.
Cho △ABC vuông tại A. biết AB = 3 cm, BC = 5 cm.
a) Giải △ABC vuông (số đo góc làm tròn đến độ)
b) Từ B kẻ đường thắng vuông góc với BC, đường thẳng này cắt AC tại D. Tính AD, BD.
c) Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD=BE.BC