\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-1+1-\sqrt{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt{1-bx}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt{1-bx}}\right)\)
\(=\dfrac{a}{3}+\dfrac{b}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\\dfrac{a}{3}+\dfrac{b}{2}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)