cho lim \(\dfrac{f\left(x\right)-5}{x-1}=4\) khi x->1 , lim \(\dfrac{g\left(x\right)-1}{x-1}=5\) khi x->1
tinh lim \(\dfrac{\sqrt{f\left(x\right)\times g\left(x\right)+4}-1}{x-1}\)khi x->1
Bài 1 tìm các giới hạn sau :
a, lim 2x²-3x-2/x-2
(limx->2)
b, lim x³-3x²+5x-3/x²-1
(limx->1)
c, limx²+2x/x²+4x+4
(limx->2)
d, limx³-x²-x+1/x²-3x+2
(lim x->1)
e, limx³-5x²+3x+9/x4-8x²-9
(lim x->1)
f, lim x4-1/x³-2x²+3
(limx->-1)
g, limx²+2x-3/2x²-x-1
(limx->1)
h,lim x³-3x+2/4-x²
(lim x->-2)
i, lim4x6-5x5+1/x²-1
(lim x->1)
k, lim x mũ m -1/ x mũ n -1
(lim x->1)m, n thuộc N
Cho hai hàm số \(y=f\left(x\right)\) và \(y=g\left(x\right)\) cùng xác định trên khoảng \(\left(-\infty;a\right)\). Dùng định nghĩa chứng minh rằng nếu \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=L\) và \(\lim\limits_{x\rightarrow-\infty}g\left(x\right)=M\) thì \(\lim\limits_{x\rightarrow-\infty}f\left(x\right).g\left(x\right)=L.M\)
Cho hàm số g(x) = \(\frac{\sqrt{2x\:+\:2}-\:\sqrt{3x\:+\:1}}{mx^2\:-\:m}\)với m khác 0 và f(x) = \(\frac{8x^{2016}\:-\:24x^{2015}}{x^{2017}\:+\:2x^{2016}\:-\:15x^{2015}}\). Ta có: lim g(x) khi x -> 1 = lim f(x) khi x -> 3. Lúc đó giá trị tham số m bằng:
A. \(\frac{-1}{64}\)
B. \(\frac{-1}{8}\)
C. 8
D. \(\frac{1}{64}\)
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
a. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}\) f. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7-3}}{2-\sqrt{x+3}}\)
b. \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}\) g. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
c. \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\) h. \(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}\)
d. \(\lim\limits_{x\rightarrow1}\frac{3x-2\sqrt{4x^2-x-2}}{x^2-3x+2}\) k. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}\)
e. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
a/ \(^{lim}_{x->0}\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\)
b/\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{1}{1-x^3}\right)\)
c/ \(^{lim}_{x->+\infty}\left(\sqrt[3]{2x-1}-\sqrt[3]{2x+1}\right)\)
d/ \(^{lim}_{x->-\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\)
e/\(^{lim}_{x->2}\left(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}\right)\)
f/ \(^{lim}_{x->0^{+-}}\left(\frac{2x}{\sqrt{4x^2+x^3}}\right)\)
a. \(\lim\limits_{x\rightarrow a}\frac{x\sqrt{x}-a\sqrt{a}}{\sqrt{x}-\sqrt{a}}\) e. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\)
b. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}\left(m,n\in Z^+\right)\) f. \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
c. \(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\) g. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-\sqrt{2x-1}}{x^3-1}\)
d. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\) h. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}\)
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x+3}{x^2+2x-3}\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\left(1+x\right)^3-1}{x}\)
c) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-1}\)
d) \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-5}{\sqrt{x}+\sqrt{5}}\)
f) \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
g) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\sqrt{x+3}-2}\)
h) \(\lim\limits_{x\rightarrow+\infty}\dfrac{1-2x+3x^3}{x^3-9}\)
i) \(\lim\limits_{x\rightarrow0}\dfrac{1}{x^2}\left(\dfrac{1}{x^2+1}-1\right)\)
j) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(x^2-1\right)\left(1-2x\right)^5}{x^7+x+3}\)