Bạn tham khảo:
Nếu \(lim\) (x->1) \(\dfrac{f\left(x\right)-5}{x-1}=2\) và lim (x->1) \(\dfrac{g\left(x\right)-1}{x-1}=3\) thì lim (x->1... - Hoc24
Không giống hoàn toàn, nhưng cách làm thì giống hoàn toàn
Bạn tham khảo:
Nếu \(lim\) (x->1) \(\dfrac{f\left(x\right)-5}{x-1}=2\) và lim (x->1) \(\dfrac{g\left(x\right)-1}{x-1}=3\) thì lim (x->1... - Hoc24
Không giống hoàn toàn, nhưng cách làm thì giống hoàn toàn
Cho f(x) thỏa mãn : \(_{\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5}\)
Tính I= \(\lim\limits_{x\rightarrow-1}\dfrac{\left(4f\left(x\right)+3\right)\left(\sqrt{4f\left(x\right)^2+2f\left(x\right)+4}\right)-2}{x^2-1}\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)
Tìm các giới hạn sau :
a, lim\(\dfrac{2x^2+x-6}{x^3+8}\) khi x→-2
b, lim\(\dfrac{x^4-x^2-72}{x^2-2x-3}\) khi x→3
c, lim\(\dfrac{x^5+1}{x^3+1}\) khi x→-1
d, lim \(\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)\) khi x→1
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x+3}{x^2+2x-3}\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\left(1+x\right)^3-1}{x}\)
c) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-1}\)
d) \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-5}{\sqrt{x}+\sqrt{5}}\)
f) \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
g) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\sqrt{x+3}-2}\)
h) \(\lim\limits_{x\rightarrow+\infty}\dfrac{1-2x+3x^3}{x^3-9}\)
i) \(\lim\limits_{x\rightarrow0}\dfrac{1}{x^2}\left(\dfrac{1}{x^2+1}-1\right)\)
j) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(x^2-1\right)\left(1-2x\right)^5}{x^7+x+3}\)
tính lim f(x):
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+1}{1-x}\left(x< 1\right)\\\sqrt{2x-2}\left(x\ge1\right)\end{matrix}\right.\)
1) \(\overset{lim}{x\rightarrow1}\)\(\dfrac{x^3-3x+2}{x^4-4x+3}\)\(\)
2)\(\overset{lim}{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}\)
3) \(\overset{lim}{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}\)
4)\(\overset{lim}{x\rightarrow0^-}\dfrac{\left(1+x\right)\left(1+4x\right)-1}{x^2}\)
5) \(\overset{lim}{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
Tính các giới hạn sau:\(I_1=\lim\limits_{x\rightarrow1}\dfrac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)....\left(1-\sqrt[n]{x}\right)}{\left(1-x\right)^{n-1}}\)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
a) lim \(\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\) khi x tiến đến -1.
b) lim (x3 + 2x2\(\sqrt{x}\) - 1) khi x tiến đến dương vô cùng.
Giúp mình với ạ.