Vì b \(\ne\) 0 nên tồn tại f(x) sao cho:
\(x^2+ax+2=\left(x-1\right).f\left(x\right)\)
=> 1 + a + 2 = 0
=> a = -3; f(x) = x - 2
Khi đó:
\(\lim\limits_{x\rightarrow1}\frac{x-1}{\left(\sqrt{x}+1\right)\left(x-1\right)f\left(x\right)}=b\)
\(\Leftrightarrow\lim\limits_{x\rightarrow1}\frac{1}{\left(\sqrt{x}+1\right)f\left(x\right)}=b\)
\(\Leftrightarrow b=\lim\limits_{x\rightarrow1}\frac{1}{\left(\sqrt{x}+1\right)\left(x-2\right)}=\frac{1}{2.\left(-1\right)}=-\frac{1}{2}\)