Công thức tính nhanh phương trình đường thẳng qua 2 cực trị của hàm bậc 3 dạng: \(y=ax^3+bx^2+cx+d\) là: \(y=\left(\dfrac{2c}{3}-\dfrac{2b^2}{9a}\right)x+\left(d-\dfrac{bc}{9a}\right)\)
Đường thẳng đi qua gốc tọa độ (2 cực trị thẳng hàng O) khi tung độ gốc bằng 0
\(\Rightarrow d-\dfrac{bc}{9a}=0\)
Áp dụng cho bài này:
\(3-\dfrac{\left(-2\right).m}{9.\dfrac{1}{3}}=0\Rightarrow-2m=9\Rightarrow m=-\dfrac{9}{2}\in\left(-5;-3\right)\)