ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)
suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)
\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)
(1);(2) suy ra acbc+adbd=acad+bcbd
nên bc+ad=bc+ad
suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)