1. Cho 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) ( b > 0, d > 0 ). Chứng tỏ rằng:
a) Nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì ad < bc
b) Nếu ad < bc thì \(\dfrac{a}{b}< \dfrac{c}{d}\)
2. Chứng tỏ rằng nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) ( b > 0, d > 0 ) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
1.
a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\left(đpcm\right)\)
Vậy ad < bc
1. Ta có :
\(\dfrac{a}{b}\) và \(\dfrac{c}{d}\left(b>0;d>0\right)\)
a, +) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow\) Nếu \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
b, +) \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\) Nếu \(ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
2. Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\left(b>0;d>0\right)\)
\(\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\left(\Leftrightarrowđpcm\right)\)
b)nếu ad < bd\(\Rightarrow\dfrac{ad}{bd}< \dfrac{cb}{bd}\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\) đpcm